this post was submitted on 23 Feb 2025
909 points (97.4% liked)
Greentext
5216 readers
1905 users here now
This is a place to share greentexts and witness the confounding life of Anon. If you're new to the Greentext community, think of it as a sort of zoo with Anon as the main attraction.
Be warned:
- Anon is often crazy.
- Anon is often depressed.
- Anon frequently shares thoughts that are immature, offensive, or incomprehensible.
If you find yourself getting angry (or god forbid, agreeing) with something Anon has said, you might be doing it wrong.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Humans are actually unusually energy efficient for mammals when walking and even more so when cycling. Here's a little info graphic showing a breakdown.
One thing to keep in mind if you have a dog is they're less energy efficient than humans. While dogs can run faster, a reasonably fit human can easily out distance an equally fit dog when walking or distance running.
Also, I love the units. Using miles on one axis and km on the other.
This is very useful. My four friends and I will have to stop swimming to work, and take the car instead.
Nice graphic. ~~But it seems like it doesn't factor in kg of mass moved. A human and a bike is a lot lighter than a car or a horse. You could also argue that the vehicle weigh should be ignored but then again you could easily argue back that weight of goods move can possibly be a lot higher with a car if you load it up to capacity~~. Ignore that. I did not see it said 5 riders for the car
I'm back with better data. I'm assuming the travel path is perfectly flat because I don't feel like modeling elevation changes. I'm being energy efficient (read: lazy).
For cycling, I'm using the global average human weight of 62 kg, assuming the cycle is 8 kg, and the pace is 10 kph, which is pretty relaxed.
For walking, I'm using the 62 kg person walking at 4 kph.
For driving with petrol, we'll use the same spherical 62 kg human and a 2024 Toyota Prius with a fuel efficiency of 4.8 L/100 km and a mass of 1570 kg. One liter of petrol is approximately 8174 kcal. Double the energy expenditure for an estimate for your typical SUV.
For electric, I chose a 2024 Hyundai Ioniq 5 N with an energy efficiency of 21.2 kWh/100km and a mass of 2235 kg. One kilowatt-hour is approximately 860 kcal.
Walking: 0.74 kcal•km^-1^•kg^-1^
Cycling: 0.34 kcal•km^-1^•kg^-1^
Driving(p): 0.24 kcal•km^-1^•kg^-1^
Driving(e): 0.08 kcal•km^-1^•kg^-1^
It still doesn't give us kcal•km^-1^•kg^-1^ (or an equivalent), which is what I was looking for. We could do some math to get us some loose estimates, though. I'll do exactly that and report back shortly.