this post was submitted on 26 Feb 2024
1487 points (94.9% liked)
Microblog Memes
10898 readers
2062 users here now
A place to share screenshots of Microblog posts, whether from Mastodon, tumblr, ~~Twitter~~ X, KBin, Threads or elsewhere.
Created as an evolution of White People Twitter and other tweet-capture subreddits.
RULES:
- Your post must be a screen capture of a microblog-type post that includes the UI of the site it came from, preferably also including the avatar and username of the original poster. Including relevant comments made to the original post is encouraged.
- Your post, included comments, or your title/comment should include some kind of commentary or remark on the subject of the screen capture. Your title must include at least one word relevant to your post.
- You are encouraged to provide a link back to the source of your screen capture in the body of your post.
- Current politics and news are allowed, but discouraged. There MUST be some kind of human commentary/reaction included (either by the original poster or you). Just news articles or headlines will be deleted.
- Doctored posts/images and AI are allowed, but discouraged. You MUST indicate this in your post (even if you didn't originally know). If an image is found to be fabricated or edited in any way and it is not properly labeled, it will be deleted.
- Absolutely no NSFL content.
- Be nice. Don't take anything personally. Take political debates to the appropriate communities. Take personal disagreements & arguments to private messages.
- No advertising, brand promotion, or guerrilla marketing.
RELATED COMMUNITIES:
founded 2 years ago
MODERATORS
~~I get the sentiment, but it's a bad example. Transformer models don't recognize images in any useful way that could be fed to other systems.~~ They also don't have any capability of actual understanding or context. Heavily simplifying here, tokenisation of inputs allows them to group clusters of letters together into tokens, so when it receives tokens it can spit out whatever the training data says it should.
~~The only actual things that are improving greatly here which could be used in different systems are natural language processing, natural language output and visual output.~~
EDIT: Crossed out stuff that is wrong.
Well, this is simply incorrect. And confidently incorrect at that.
Vision transformers (ViT) is an important branch of computer vision models that apply transformers to image analysis and detection tasks. They perform very well. The main idea is the same, by tokenizing the input image into smaller chunks you can apply the same attention mechanism as in NLP transformer models.
ViT models were introduced in 2020 by Dosovitsky et. al, in the hallmark paper "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" (https://arxiv.org/abs/2010.11929). A work that has received almost 30000 academic citations since its publication.
So claiming transformers only improve natural language and vision output is straight up wrong. It is also widely used in visual analysis including classification and detection.
Thank you for the correction. So hypothetically, with millions of hours of GoPro footage from the scuttle crew, and if we had some futuristic supercomputer that could crunch live data from a standard definition camera and output decisions, we could hook that up to a Boston dynamics style robot and run one replaced member of the crew?
Huh? Image ai to semantic formating, then consumption is trivial now
Could you give me an example that uses live feeds of video data, or feeds the output to another system? As far as I'm aware (I could be very wrong! Not an expert), the only things that come close to that are things like OCR systems and character recognition. Describing in machine-readable actionable terms what's happening in an image isn't a thing, as far as I know.
No live video no, that didn't seem the topic
But if you had the horsepower, I don't think it's impossible based on what I've worked with. It's just about snipping and distributing the images, from a bottleneck standpoint
Well, that'd be a prerequisite to a transformer model making decisions for a ship scuttling robot, hence why I brought it up.
It is. That's actually the basis of multimodal transformers - they have a shared embedding space for multiple modes of data (e.g. text and images). If you encode data and take those embeddings, you suddenly have a vector describing the contents of your input.