this post was submitted on 15 Jul 2024
24 points (100.0% liked)

SneerClub

989 readers
10 users here now

Hurling ordure at the TREACLES, especially those closely related to LessWrong.

AI-Industrial-Complex grift is fine as long as it sufficiently relates to the AI doom from the TREACLES. (Though TechTakes may be more suitable.)

This is sneer club, not debate club. Unless it's amusing debate.

[Especially don't debate the race scientists, if any sneak in - we ban and delete them as unsuitable for the server.]

founded 1 year ago
MODERATORS
24
submitted 4 months ago* (last edited 4 months ago) by [email protected] to c/[email protected]
 

UPDATE: The 91 dB reading was actually dBC, not dBA. This is significantly worse. As YouKnowWhoTheFuckIAM pointed out, locatability is a factor in the health effects, and high pitched frequencies are bad in this regard. As there are likely sub-sonic sounds which would not appear in the dBC reading, the volume is even higher, this would push the noise inside the facility to sonic weapon territory, and ear protection can't cover the full spectrum that well, it's either or. Persistence of the sound is the worst it could possibly be: 24/7. One doctor said he sees one patient a week with symptoms from this. From one rural settlement. Everybody's fucked

There are two types of disabilities caused by excessive noise: those that have a neurological or psychological cause (whose impact is measured in dBa) like tinnitus or cardiovascular issues stemming from anxiety, and those that are directly from trauma to the ear (measured in dB). dBa is corrected for the frequency response of the human ear, while dB is a more objective measure of pressure level.

The recent Time article featured a former oath keepers member with a measuring device (most likely dBa, he got 91) on the opposite side of the road of a bitcoin mine situated right next to residences. I traced the buildings on OpenStreetMap and calculated the noise level in the area. In the previous post there was someone that said the sound attenuates quickly. This is only true for point sources at large distances (inverse square law). I wrote the following python code that I think is more appropriate for this situation[1]:

G = 50
v = 331 # speed of sound
l = 10 ** (91 / 20)

def D(R):
    return exp(G/(R * v ** 2))

def d(t1, t2):
    x = abs((t1[0] - t2[0]) ** 2 + (t1[1] - t2[1]) ** 2)
    return x * D(x) ** 2

def pair(emitter, target):
    return l / d(emitter, target)

I found the noise within the facility to be 118 dBa. Assuming that the audio recording in the article has a flat frequency response (TV is really EQ'd so this can be false), this is 131 dB. At that level ear drums rupture within seconds. The workers are lucky that the noise peaks at frequencies that can be blocked by ear protection.

Outside the facility, levels ranged from 66 to 95

Noise levels of 50 dB(A) or greater at night may increase the risk of myocardial infarction by chronically elevating cortisol production

Approximately 35% to 40% of office workers find noise levels from 55 to 60 dB(A) extremely irritating. The noise standard in Germany for mentally stressful tasks is set at 55 dB(A), however, if the noise source is continuous, the threshold level for tolerability among office workers is lower than 55 dB(A).

Physicists reading this are welcome to point out what i got wrong :)

[1] https://medium.com/timematters/universal-inverse-square-laws-without-singularities-d25c47ef8d77

you are viewing a single comment's thread
view the rest of the comments