this post was submitted on 11 Mar 2024
321 points (99.1% liked)
Climate - truthful information about climate, related activism and politics.
5197 readers
671 users here now
Discussion of climate, how it is changing, activism around that, the politics, and the energy systems change we need in order to stabilize things.
As a starting point, the burning of fossil fuels, and to a lesser extent deforestation and release of methane are responsible for the warming in recent decades:
How much each change to the atmosphere has warmed the world:
Recommended actions to cut greenhouse gas emissions in the near future:
Anti-science, inactivism, and unsupported conspiracy theories are not ok here.
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Maybe not in the article, but I've heard in other places that a carbon heavy grid still gets enough energy to the heat pump that the heat pump's efficiency can offset that increase.
You're also installing a system that is easier to decarbon in the future, which isn't the case for natural gas.
It is really not hard. Heat pump coefficients of efficiency floor at 1, but typically range between ~2.5 and 7. That is, for every joule of energy they consume, they pump 2.5 to 7 joules of heat into the conditioned space.
So you have to just look at efficiencies involved.
Still, we're just summing stuff. And while I won't pretend any napkin math here is the same as a formal research project, we can plainly see that the HUGE energy efficiency of heat pumps can easily eclipse the inefficiency of fossil electrical production, all else being equal. Of course, whether it actually WILL be better than a fossil furnace will depend on local factors, but these places are increasingly becoming edge cases. And then, on top of that, you unlock future potential to seamlessly switch fuel sources from fossils to renewables, which becomes very important in lifecycle cost analysis.
This is the same reason electric cars beats ICE (gas driven) cars even when charged on coal power. Big coal plants and the distribution grid are more efficient than small scale car engines.
You need combustion engines to be BIG to get past 30-40% efficiency ranges, but the really big power plants can just perform efficient burns and heat water to drive efficient turbines, which is impossible in cars. And the rest of losses in electric cars are either minimal or equivalent, so you get a big net benefit.
Even better than that is an electric bus and other public transit!
Even better when your busses/transit are powered by a pantograph.