this post was submitted on 25 Feb 2024
722 points (96.3% liked)
Science Memes
11004 readers
3306 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- !reptiles and [email protected]
Physical Sciences
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
- [email protected]
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and [email protected]
- [email protected]
- !self [email protected]
- [email protected]
- [email protected]
- [email protected]
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
And mathematicians divide by multiplying!
In formal definitions of arithmetics, division can be defined via multiplication: as a simplified example with real numbers, because a ÷ 2 is the same as a × 0.5, this means that if your axioms support multiplication you'll get division out of them for free (and this'll work for integers too, the definition is just a bit more involved.)
Mathematicians also subtract by adding, with the same logic as with division.
this is true... except when it isn't.
https://en.wikipedia.org/wiki/Ring_(mathematics)
Yeah I should maybe just have written
Right. The cells are dividing in half, which would be represented in math form by 1/0.5 = 2. Dividing by one half is the same thing as multiplying by 2, and division in general is really just a visually simplified way to multiply by a fraction of 1.
Any time you divide by some fraction of 1, you will necessarily end up with a larger number because you're doubling that division which reverses it back into multiplication, much in the same way as a negative x negative = positive. If that makes sense.
A mathematician would not be bothered by this. A high schooler taking algebra I might be though, if you phrased it the same way this post did.
a/b is the unique solution x to a = bx, if a solution exists. This definition is used for integers, rationals, real and complex numbers.
Defining a/b as a * (1/b) makes sense if you're learning arithmetic, but logically it's more contrived as you then need to define 1/b as the unique solution x to bx = 1, if one exists, which is essentially the first definition.
That's me, a degree-holding full time computer scientist, just learning arithmetic I guess.
Bonus question: what even is subtraction? I'm 99% sure it doesn't exist since I've never used it, I only ever use addition.
Addition by the additive inverse.
Now you just replaced one incalculable thing with a different incalculable thing.
Eh?
Computers don't subtract, and you can't just add a negative, a computer can't interpret a negative number, it can only store a flag that the number is negative. You need to use a couple addition tricks to subtract to numbers to ensure that the computer only has to add. It's addition all the way down.
What does this have to do with computers?
It's just addition wearing a trench coat, fake beard and glasses
The example was just to illustrate the idea not to define division exactly like that
Cells: 🫣🫨😢