this post was submitted on 24 Feb 2024
37 points (100.0% liked)
science
14722 readers
875 users here now
just science related topics. please contribute
note: clickbait sources/headlines aren't liked generally. I've posted crap sources and later deleted or edit to improve after complaints. whoops, sry
Rule 1) Be kind.
lemmy.world rules: https://mastodon.world/about
I don't screen everything, lrn2scroll
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Electrons are not subject to the strong nuclear force that glues the protons neutrons together. This means that no attractive force would prevent electric repulsion to scatter a "electron nucleus".
From a field theory perspective, the strong nuclear force is a SU(3) gauge interaction and the electron field transforms as a singlet under that SU(3)
This was my thoughts to. Electrons don't clump together on their own. Do gluons even affect electrons at all, or is that more of a baryonic thing?
Strong interaction is really designed as a baryonic thing, leptons have no color charge (which is another way to say that they transform as SU(3) singlets). Leptons do not interact with gluons.
Not at tree-level anyway. See for example this list of vertices.
At loop levels, it's possible to imagine an electron decaying into neutrino+W, then W into two quarks who can then interact with gluons, but as it's down a couple of orders in perturbation theory so probably much too weak to hold a nucleus together. Not an expert in particle physics so I do not know with certainty whether a couple-of-loops interaction can have a measurable effect.