Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Please don't post about US Politics. If you need to do this, try [email protected]
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected].
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
I see great potential in hydrogen, because we could produce lots of it by dumping excess solar and wind energy into electrolysis. That would mean that instead of burning coal, oil and gas in peaker plants, we could use hydrogen for grid balancing. Assuming we had that sort of hydrogen infrastructure for the grid, we could obviously put some of the hydrogen for road vehicle use as well.
In the short term, cost is going to be an issue, but that can be overcome through economies of scale. However, safety is a bit tricky due to the explosive nature of hydrogen. I’ve heard of various creative solutions but they always come with serious drawbacks. So far, storing hydrogen in a pressurized tank seems to be the least awful option out there. On the other hand, electric cars will happily ignite from time to time, so I guess we’ve already accepted a certain level of danger when it comes to vehicles.
Historically, electric cars have caught fire much less often than petrol cars (even accounting for the lower number of EV's on the road). Most of these have been from a single battery manufacturing line and caused by a single misaligned robot that placed the battery terminals too close together. These batteries have all been recalled under warranty.
There are battery types that are better for grid storage than hydrogen. One of the main drawbacks of hydrogen storage is its low round trip efficiency of around 30%.
Redox flow batteries are easily scalable, liquid metal batteries have very low maintenance costs and long lifespans, and sodium ion batteries are much cheaper than lithium ion batteries. It will be interesting to see if any of these options make mass market.
I’ve seen some videos about redox flow batteries and a bunch of other options that appear to be suitable for the grid. I’m really looking forward to seeingt hose in action, because I believe grid energy storage is absolutelyt crucial for getting rid of coal and oil.
However, even though converting electricity to something and then back to electricity is nice, there are many cases where you can take a shortcut. Various types of industry are using fossil fuels to produce heat, so if you give them electricity, they can produce heat when they need it. That’s not the only way, because you could also reduce the number of conversions by using the energy of windy and sunny days to produce heat and store it in hot sand. Later, when the factory needs the heat but the sun isn’t shining, they can just the heat stored in the sand.