this post was submitted on 08 Mar 2025
176 points (97.8% liked)
Technology
64937 readers
4826 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
A better price as low density chips are cheaper.
And you can fit in more of those in a bigger space = Cheaper.
The lowest density chips are still going to be way smaller than even a E1.S board. The only thing you might be able to be cheaper as you'd maybe need fewer SSD controllers, but a 3.5" would have to be, at best, a stack of SSD boards, probably 3, plugged into some interposer board. Allowing for the interposer, maybe you could come up with maybe 120 square centimeter boards, and E1.L drives are about 120 square centimeters anyway. So if you are obsessed with most NAND chips per unit volume, then E1.L form factor is alreay going to be in theory as capable as a hypothetical 3.5" SSD. If you don't like the overly long E1.L, then in theory E3.L would be more reasonably short with 85% of the board surface area. Of course, all that said I've almost never seen anyone go for anything except E1.S, which is more like M.2 sized.
So 3.5" would be more expensive, slower (unless you did a new design), and thermally challenged.