12
๐โโ๏ธ - 2024 DAY 20 SOLUTIONS -๐โโ๏ธ
(programming.dev)
An unofficial home for the advent of code community on programming.dev!
Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.
Solution Threads
M | T | W | T | F | S | S |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 |
Icon base by Lorc under CC BY 3.0 with modifications to add a gradient
console.log('Hello World')
There is exactly one path without cheating, so yes, the distance to one end is always the total distance minus the distance to the other end.
Gotcha, thanks. I just re-read the problem statement and looked at the input and my input has the strongest possible version of that constraint: the path is unbranching and has start and end at the extremes. Thank-you!
I missed that line too:
So I also did my pathfinding for every variation in the first part, but realised something must be wrong with my approach when I saw part 2.