this post was submitted on 08 Sep 2024
138 points (95.4% liked)

Science Memes

10923 readers
2411 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 10 points 1 month ago (2 children)

A vector space is when you can:

  • add two Things
  • multiply a Thing by any real number

And get another Thing that’s the same Kind of Thing.

By Thing I mean Vector and by Kind of Thing I mean element of the same Vector Space.

Examples of vector spaces:

  • real numbers
  • complex numbers
  • sets of N numbers (what most people think of when they hear “vector”)
  • matrices
  • polynomials
  • functions
  • quantum states of a given system
  • quantities of apples sold, classified by type of apple

Examples of Not Vector Spaces:

  • integers
  • negative numbers
  • nonzero numbers
  • unitary matrices
  • apples

Yeah a few of these come with asterisks I’m happy to answer questions but don’t want to argue with pedants.

[–] [email protected] 2 points 1 month ago (1 children)

wow didn't expect this to be so general. How do integers not fit into the definition ? you can add them together and obtain another integer

[–] [email protected] 5 points 1 month ago

When talking about vector space, you usually need the "scalar (field)", and scalars need inverse to be well-defined.

So for integers, the scalar should be integer itself. Sadly, inverse of integers stops being an integer, ~~from where all sorts of number theoretic nightmare occurs~~ Instead, integers form a ring, and is a module over scalar of integers.