this post was submitted on 25 Jan 2024
922 points (98.3% liked)
Programmer Humor
32479 readers
893 users here now
Post funny things about programming here! (Or just rant about your favourite programming language.)
Rules:
- Posts must be relevant to programming, programmers, or computer science.
- No NSFW content.
- Jokes must be in good taste. No hate speech, bigotry, etc.
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Anything that's turning complete, has enough ram, and has a c compiler can run Linux. Theoretically, you could program a CPLD to run brainfuck and you could still run Linux.
The mainline part is key.
Yes. Any turing complete processor can perfectly emulate any other turing complete processor, whether it is x86, arm, or riscv. Mainline Linux can then run on this emulated processor without modification.
Damn that's gonna be slow.
But I guess speed was not a criterion.
It's technically correct, the best kind of correct.
I guess it's the difference of can today vs could if this emulator existed...
"boot" is the next important part. Have you tried reading it in full?
Emulated processors can do the same things as physical processors, including booting from disk.
Boot = Bootstrap
If you've loaded up a virtual CPU first that's not a boot of mainline Linux on the CPU.
I respectfully disagree. The turning machine is not doing any set-up before the emulated CPU begins execution, and all of the actual BIOS is done by the emulated CPU.
Nerd argument.
Yes, but it doesn't count, because the SoC from the picture didn't boot Linux, an emulated machine did.
That's why the records on doing this silly stuff on progressively smaller microcontroller use the word "run". It has more transitivity.
I'm not sure I understand your argument. Are you saying that the emulated processor executes instructions while the SoC doesn't? Every instruction that goes to the x86 is broken down into several SoC instructions, which the SoC executes in order to emulate what an x86 would do. Saying that the emulated x86 is booting/running Linux, but the SoC is not is like saying that computers can't run java code, they can only run jvm.
I'm saying it runs it because "running" is transitive, but doesn't boot it because "booting" is not. Similarly to how you can carry your grandkid by carrying your kid who carries their kid (carrying is transitive), but you can't give birth to your grandkid by giving birth to your kid who'd give birth to their kid (giving birth is not transitive).
...and lack of "theory".