this post was submitted on 02 Oct 2023
125 points (93.1% liked)
Asklemmy
43761 readers
1173 users here now
A loosely moderated place to ask open-ended questions
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- [email protected]: a community for finding communities
~Icon~ ~by~ ~@Double_[email protected]~
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Gravity bends light. You can literally detect large masses by how they distort the space around them. From what we can observe, space overall is pretty flat. AND we can measure where stuff is going using various proxies i.e the doppler shift, spectral lines, standard candles etc. If stuff was being pulled toward some mass, its going to cause deviations in how fast things are moving relative to each other. Which in the case of the great attractor, is what is happening. But if you are asking whether everything is falling toward something in every direction equally, the answer is no due to the shell theorm.
What do you mean by that?
Look at a piece of paper. Mark two points on it that are a good distance apart. Travel can only happen along the surface of the paper. When it's flat, your time of travel depends on the distance between the two points on that paper.
Now dap a spot of glue next to one of the points and fold the paper in such a way that the other point comes to rest close to that glue. Wait for it to bind and then spread the paper a little without breaking the glue. That glued point is a wormhole, a place where two points of that flat 2D universe touch despite not being next to each other. Travel from point A to point B is now a shorter distance thanks to the wormhole. But there is no way in which the paper universe can be described as flat anymore.
Or think of a papermache ball, that's also made from paper but if you travel long enough in one direction, you'll end up where you started. Because it isn't flat.
Now our universe is 3D not 2D, but from a higher dimensional perspective it has the same prooerties of flatness as that 2D paper has for us.
Geometrically speaking, if you draw a really, really big triangle between, say three galaxies, the angles of the triangle add to 180° in a flat universe. In a non-flat space, this would not be the case. For example, if you draw a triangle between, say, New York, Berlin and Rio de Janeiro on the surface of the Earth, the three angles between the lines would add to more than 180° since Earth is topologically a sphere and not flat. And if you draw three lines beween three points on a saddle shape like a Pringles chip, you'll find that the angles add up to less than 180°.
Fun fact: topologically speaking, no matter how you fold or bend a sheet of paper, it remains flat. A cilinder is a flat surface with zero curvature!
What I mean is that what we observe is best approximated as a relative lack of spatial curvature over long distance scales. One of the lines of evidence for this is the cosmic microwave background. A flat topology for space-time over long distances would look different than an open or closed universe: https://phys.org/news/2017-06-universe-flat-topology.html