this post was submitted on 24 Sep 2023
73 points (96.2% liked)

Ask Science

8681 readers
30 users here now

Ask a science question, get a science answer.


Community Rules


Rule 1: Be respectful and inclusive.Treat others with respect, and maintain a positive atmosphere.


Rule 2: No harassment, hate speech, bigotry, or trolling.Avoid any form of harassment, hate speech, bigotry, or offensive behavior.


Rule 3: Engage in constructive discussions.Contribute to meaningful and constructive discussions that enhance scientific understanding.


Rule 4: No AI-generated answers.Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.


Rule 5: Follow guidelines and moderators' instructions.Adhere to community guidelines and comply with instructions given by moderators.


Rule 6: Use appropriate language and tone.Communicate using suitable language and maintain a professional and respectful tone.


Rule 7: Report violations.Report any violations of the community rules to the moderators for appropriate action.


Rule 8: Foster a continuous learning environment.Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.


Rule 9: Source required for answers.Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.


By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.

We retain the discretion to modify the rules as we deem necessary.


founded 1 year ago
MODERATORS
 

Think "you wake up in the woods naked," Dr. Stone-style tech reset. How could humans acquire a 1-gram weight, a centimeter ruler, an HH:MM:SS timekeeping device, etc. starting with natural resources?

My best guess was something involving calibrating a mercury thermometer (after spending years developing glassblowing and finding mercury, lol) using boiling water at sea level to mark 100 ° C and then maybe Fahrenheit's dumb ice ammonium chloride brine to mark -17.7778 ° C, then figuring out how far apart they should be in millimeters on the thermometer (er, somehow). I can already think of several confounding variables with that though, most notably atmospheric pressure.

I feel like the most important thing to get would be a length measurement since you can then get a 1 gram mass from a cubic centimeter of distilled water.

That's as far as I got with this thought experiment before deciding to ask the internet. I actually asked on Reddit a while back but never got any responses.

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 4 points 1 year ago (1 children)

This one I wondered about more because of the effect of atmospheric pressure(?) on melting point, such that I wondered if it would be worth using Fahrenheit's Weird Brine ice slurry to get ~ -17.778 ° C instead. But that's ofc also subject to air pressure influencing melting point so I'm unsure if it'd be worthwhile.

Varying air pressure is certainly a concern, but repeating the experiment, as you said, would help to reduce the error, as would being as close to sea level as possible. Interestingly, if you have your meter measure you could use that to measure atmospheric pressure by seeing how far you could raise water in a column by suction. At standard atmospheric pressure you should be able to lift fresh water 10.3m.

Relatively constant 9.81 m/s² gravity is also useful for deriving force as you mention, though it reminds me of learning, to my abject horror, in undergrad physics that gravity does vary quite a bit by geolocation :'D 9.81m/s² is a better starting point than nothing though

Gravity is altogether too unreliable and should be abolished. Failing that, You could measure the local gravity by measuring how far a rock falls in a fixed time, say one second, and calculating back from that. If the rock is heavy enough we can ignore air resistance as the effect will be smaller than our measurement error.

[–] [email protected] 2 points 1 year ago

Interestingly, if you have your meter measure you could use that to measure atmospheric pressure by seeing how far you could raise water in a column by suction. At standard atmospheric pressure you should be able to lift fresh water 10.3m.

Oh yeah! I should have remembered that actually, since I was just rewatching an episode of Connections 2 that mentions this height limit in the context of vacuum pump history (I think it's detailed more in season 1 but I forget which episode). So 10.3 m is another key measurement that you want at least one human to have memorized :]

Gravity is altogether too unreliable and should be abolished.

This reads like a Douglas Adams quote and I love it.