Technology
This is the official technology community of Lemmy.ml for all news related to creation and use of technology, and to facilitate civil, meaningful discussion around it.
Ask in DM before posting product reviews or ads. All such posts otherwise are subject to removal.
Rules:
1: All Lemmy rules apply
2: Do not post low effort posts
3: NEVER post naziped*gore stuff
4: Always post article URLs or their archived version URLs as sources, NOT screenshots. Help the blind users.
5: personal rants of Big Tech CEOs like Elon Musk are unwelcome (does not include posts about their companies affecting wide range of people)
6: no advertisement posts unless verified as legitimate and non-exploitative/non-consumerist
7: crypto related posts, unless essential, are disallowed
view the rest of the comments
I'm really excited to see this kind of stuff experimented with. I find it's really useful of thinking of machine learning agent training in terms of creating a topology through balancing of the weights and connections that ends up being a model of a particular domain described by the data that it's being fed. The agent learns patterns in the data it observes and creates an internal predictive model based on that. Currently, most machine learning systems seem to focus on either individual agents or small groups such as adding a supervisor. It would be interesting to see large graphs of such agents that interact in complex ways and where high level agents are only interacting with other agents and don't even need to see any of the external inputs directly. One example would be to have a system trained on working with visual input and another with audio, and then have a high level system that's responsible for integrating these inputs and doing the actual decision making.
and just ran across this https://arxiv.org/abs/2308.00352