this post was submitted on 27 Jan 2025
654 points (97.7% liked)

Technology

35483 readers
372 users here now

This is the official technology community of Lemmy.ml for all news related to creation and use of technology, and to facilitate civil, meaningful discussion around it.


Ask in DM before posting product reviews or ads. All such posts otherwise are subject to removal.


Rules:

1: All Lemmy rules apply

2: Do not post low effort posts

3: NEVER post naziped*gore stuff

4: Always post article URLs or their archived version URLs as sources, NOT screenshots. Help the blind users.

5: personal rants of Big Tech CEOs like Elon Musk are unwelcome (does not include posts about their companies affecting wide range of people)

6: no advertisement posts unless verified as legitimate and non-exploitative/non-consumerist

7: crypto related posts, unless essential, are disallowed

founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 8 points 2 days ago

It's not about hampering proliferation, it's about breaking the hype bubble. Some of the western AI companies have been pitching to have hundreds of billions in federal dollars devoted to investing in new giant AI models and the gigawatts of power needed to run them. They've been pitching a Manhattan Project scale infrastructure build out to facilitate AI, all in the name of national security.

You can only justify that kind of federal intervention if it's clear there's no other way. And this story here shows that the existing AI models aren't operating anywhere near where they could be in terms of efficiency. Before we pour hundreds of billions into giant data center and energy generation, it would behoove us to first extract all the gains we can from increased model efficiency. The big players like OpenAI haven't even been pushing efficiency hard. They've just been vacuuming up ever greater amounts of money to solve the problem the big and stupid way - just build really huge data centers running big inefficient models.