15
๐ป - 2024 DAY 23 SOLUTIONS -๐ป
(programming.dev)
An unofficial home for the advent of code community on programming.dev!
Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.
Solution Threads
M | T | W | T | F | S | S |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 |
Icon base by Lorc under CC BY 3.0 with modifications to add a gradient
console.log('Hello World')
Kotlin
Part1 was pretty simple, just check all neighbors of a node for overlap, then filter out triples which don't have nodes beginning with 't'.
For part2, I seem to have picked a completely different strategy to everyone else. I was a bit lost, then just boldly assumed, that if I take overlap of all triples with 1 equal node, I might be able to find the answer that way. To my surprise, this worked for my input. I'd be very curious to know if I just got lucky or if the puzzle is designed to work with this approach.
The full code is also on GitHub.
::: spoiler Solution
That's a fun approach. The largest totally connected group will of course contain overlapping triples, so I think you're effectively doing the same thing as checking a node at a time, just more efficiently.