this post was submitted on 14 Dec 2024
15 points (100.0% liked)

Advent Of Code

982 readers
59 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 14: Restroom Redoubt

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 2 points 1 week ago* (last edited 1 week ago)

Python

I was very confused when I saw the second part. I was like "how the fuck am I supposed now how that shape will exactly look like?" I looked a couple of initial shapes all of which looked sufficiently random. So I constructed x and y marginal distributions of the robots to impose some non-symmetry conditions.

My initial attempt was to just require maximum of x marginal should be at the centre but the sneaky bastards apparently framed the tree and tree was shorter than I expected (realised this only later) so that did not return any hits. I played around a bit and settled for: most of the maximums of x marginal should be near the centre and y marginal should be asymmetric. I still had to play around with the thresholds for these a bit because initially there was a couple of shapes (some repeating every 100 cycles or so) that satisfied my requirements (I had a part which actually outputted found shapes to a text file but then removed that in the final code). So it wasn't %100 free of manual labour but I can say mostly...

import numpy as np
from pathlib import Path
from collections import Counter
cwd = Path(__file__).parent


def parse_input(file_path):
  with file_path.open("r") as fp:
    robot_info = fp.readlines()

  _split = lambda x,p: [int(x.split(' ')[p].split(',')[0].split('=')[-1]),
                        int(x.split(' ')[p].split(',')[-1])]

  robot_pos = np.array([_split(x, 0) for x in robot_info])
  robot_vel = np.array([_split(x, 1) for x in robot_info])

  return robot_pos, robot_vel


def solve_problem1(file_name, nrows, ncols, nmoves):

  robot_pos, robot_vel = parse_input(Path(cwd, file_name))

  final_pos = robot_pos + nmoves*robot_vel
  final_pos = [(x[0]%ncols, x[1]%nrows) for x in list(final_pos)]

  pos_counts = Counter(final_pos)
  coords = np.array(list(pos_counts.keys()))[:,::-1] #x is cols, y is rows
  coords = tuple(coords.T)

  grid = np.zeros((nrows, ncols), dtype=int)
  grid[coords] += list(pos_counts.values())

  counts = [np.sum(grid[:nrows>>1, :ncols>>1]),
            np.sum(grid[:nrows>>1, -(ncols>>1):]),
            np.sum(grid[-(nrows>>1):, :ncols>>1]),
            np.sum(grid[-(nrows>>1):, -(ncols>>1):])]

  return int(np.prod(counts))


def solve_problem2(file_name, nrows, ncols):

  robot_pos, robot_vel = parse_input(Path(cwd, file_name))

  grid = np.zeros((nrows, ncols), dtype=object)

  # update all positions in a vectorised manner
  final_positions = robot_pos[None, :, :] + np.arange(1,10000)[:,None,None]*robot_vel[None,:,:]
  final_positions[:,:,0] = final_positions[:,:,0]%ncols
  final_positions[:,:,1] = final_positions[:,:,1]%nrows

  for s in range(final_positions.shape[0]):
    grid[:,:] = 0

    final_pos = map(tuple, tuple(final_positions[s,:,:]))

    pos_counts = Counter(final_pos)
    coords = np.array(list(pos_counts.keys()))[:,::-1] #x is cols, y is rows
    coords = tuple(coords.T)

    grid[coords] += list(pos_counts.values())

    xmarg = np.sum(grid, axis=0)
    tops = set(np.argsort(xmarg)[::-1][:10])
    p_near_center = len(tops.intersection(set(range((ncols>>1)-5, (ncols>>1) + 6))))/10

    ymarg = np.sum(grid, axis=1)
    ysym = 1 - abs(ymarg[:nrows>>1].sum() - ymarg[nrows>>1:].sum())/ymarg.sum()

    if p_near_center>0.5 and ysym<0.8:
      return s+1