this post was submitted on 06 Dec 2024
26 points (96.4% liked)

Advent Of Code

995 readers
2 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 6: Guard Gallivant

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 1 points 1 month ago (1 children)

Mine was 9s

That's about how long it takes for my python solution to complete.

[–] [email protected] 2 points 1 month ago (2 children)

How did you detect loops? I just ran for 100000 steps to see if I escaped, got my time down to 3s by doing only 10000 steps.

[–] [email protected] 2 points 1 month ago (1 children)

Not who you asked but: I save coordinates and direction into a vector each time the guard faces a #. Also every time the guard faces a #, I check if the position exists in the vector, if true, it’s an infinite loop. 78ms rust aolution.

[–] [email protected] 1 points 1 month ago

That's probably quite optimal, compared with checking every state in the path, or running off a fixed number of steps

[–] [email protected] 2 points 1 month ago* (last edited 1 month ago)

I added each visited position/direction to a set, and when a 'state' is reached again you have entered a loop:

v = set()
while t[g.r][g.c] != 'X':
    state = (g.r, g.c, g.d)
    if state in v:
        acc += 1
        break
    v.add(state)
    g.move(t)

You can view my full solution here.