this post was submitted on 05 Dec 2024
26 points (100.0% liked)

Advent Of Code

982 readers
61 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2024

Solution Threads

M T W T F S S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS
 

Day 5: Print Queue

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 3 points 2 weeks ago

Rust

While part 1 was pretty quick, part 2 took me a while to figure something out. I figured that the relation would probably be a total ordering, and obtained the actual order using topological sorting. But it turns out the relation has cycles, so the topological sort must be limited to the elements that actually occur in the lists.

Solution

use std::collections::{HashSet, HashMap, VecDeque};

fn parse_lists(input: &str) -> Vec<Vec<u32>> {
    input.lines()
        .map(|l| l.split(',').map(|e| e.parse().unwrap()).collect())
        .collect()
}

fn parse_relation(input: String) -> (HashSet<(u32, u32)>, Vec<Vec<u32>>) {
    let (ordering, lists) = input.split_once("\n\n").unwrap();
    let relation = ordering.lines()
        .map(|l| {
            let (a, b) = l.split_once('|').unwrap();
            (a.parse().unwrap(), b.parse().unwrap())
        })
        .collect();
    (relation, parse_lists(lists))
}

fn parse_graph(input: String) -> (Vec<Vec<u32>>, Vec<Vec<u32>>) {
    let (ordering, lists) = input.split_once("\n\n").unwrap();
    let mut graph = Vec::new();
    for l in ordering.lines() {
        let (a, b) = l.split_once('|').unwrap();
        let v: u32 = a.parse().unwrap();
        let w: u32 = b.parse().unwrap();
        let new_len = v.max(w) as usize + 1;
        if new_len > graph.len() {
            graph.resize(new_len, Vec::new())
        }
        graph[v as usize].push(w);
    }
    (graph, parse_lists(lists))
}


fn part1(input: String) {
    let (relation, lists) = parse_relation(input); 
    let mut sum = 0;
    for l in lists {
        let mut valid = true;
        for i in 0..l.len() {
            for j in 0..i {
                if relation.contains(&(l[i], l[j])) {
                    valid = false;
                    break
                }
            }
            if !valid { break }
        }
        if valid {
            sum += l[l.len() / 2];
        }
    }
    println!("{sum}");
}


// Topological order of graph, but limited to nodes in the set `subgraph`.
// Otherwise the graph is not acyclic.
fn topological_sort(graph: &[Vec<u32>], subgraph: &HashSet<u32>) -> Vec<u32> {
    let mut order = VecDeque::with_capacity(subgraph.len());
    let mut marked = vec![false; graph.len()];
    for &v in subgraph {
        if !marked[v as usize] {
            dfs(graph, subgraph, v as usize, &mut marked, &mut order)
        }
    }
    order.into()
}

fn dfs(graph: &[Vec<u32>], subgraph: &HashSet<u32>, v: usize, marked: &mut [bool], order: &mut VecDeque<u32>) {
    marked[v] = true;
    for &w in graph[v].iter().filter(|v| subgraph.contains(v)) {
        if !marked[w as usize] {
            dfs(graph, subgraph, w as usize, marked, order);
        }
    }
    order.push_front(v as u32);
}

fn rank(order: &[u32]) -> HashMap<u32, u32> {
    order.iter().enumerate().map(|(i, x)| (*x, i as u32)).collect()
}

// Part 1 with topological sorting, which is slower
fn _part1(input: String) {
    let (graph, lists) = parse_graph(input);
    let mut sum = 0;
    for l in lists {
        let subgraph = HashSet::from_iter(l.iter().copied());
        let rank = rank(&topological_sort(&graph, &subgraph));
        if l.is_sorted_by_key(|x| rank[x]) {
            sum += l[l.len() / 2];
        }
    }
    println!("{sum}");
}

fn part2(input: String) {
    let (graph, lists) = parse_graph(input);
    let mut sum = 0;
    for mut l in lists {
        let subgraph = HashSet::from_iter(l.iter().copied());
        let rank = rank(&topological_sort(&graph, &subgraph));
        if !l.is_sorted_by_key(|x| rank[x]) {
            l.sort_unstable_by_key(|x| rank[x]);            
            sum += l[l.len() / 2];
        }
    }
    println!("{sum}");
}

util::aoc_main!();

also on github