Does anyone know where it is that we can find these new commands? I have an esp32 dev kit just a few feet away from me as i read this. It might be interesting to know what these new product "features" are.
Technology
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
Haha. I wear cheap Chinese bluetooth literally on my skull like 95% of the time, web when sleeping.
Hope they enjoy my thoughts.
The rebuttal wasn't as comforting as some are making it out to be. They seem to be more interested in the semantics of it not being a backdoor tied to a specific product, which appears to be true.
Rather it is a potential for vulnerability that exists in all wireless implementation, which seems to me to be a bigger issue.
This isn't a backdoor. Just a company trying to make name for themselves by sensationalizing a much smaller discovery.
Seriously this. Every single IC which has digital logic contains some number of undocumented test commands used to ensure it meets all the required specifications during production. They're not intended to be used for normal operation and almost never included in datasheets.
If anyone's ever followed console emulator development, they know those undocumented commands are everywhere. There's still people finding new ones for the N64 hardware
Edit: I should say undocumented behavior, not necessarily new commands
Gotta blame China to get upvoted on Lemmy.
Or use a precise title. It's not a backdoor or a "backdoor".
Fukin dmnit! I just spent the last several months fine tuning a PCB design supporting this platform. I have , what i believe to be my last iteration, being sent to fab now. I have to look i to this. My solution isnt using bluetooth, so i dont know if im vulnerable.
Go for it. It’s a bullshit attention grab. No backdoor, just some undocumented vendor commands (which is the norm for virtually every chip out there).
The exploit requires physical access. It's not exploitable in 99% of cases
Its not a backdoor, you're most likely fine.
Weird that they removed the reference to ESP32, one of the most common and widely known microcontrollers, from the headline.
This sounds like there are some undocumented opcodes on the HCI side -- the Host Computer Interface -- not the wireless side. By itself, it's not that big a deal. If someone can prove that there's some sort of custom BLE packet that gives access to those HCI opcodes wirelessly, I'd be REALLY concerned.
But if it's just on the host side, you can only get to it if you've cracked the box and have access to the wiring. If someone has that kind of access, they're likely to be able to flash their own firmware and take over the whole device anyway.
Not sure this disclosure increases the risk any. I wouldn't start panicking.
So explained to me, a tech illiterate in comparison, this is China bad scaremongering?
'Backdoor' sounds malicious with intent.
Pull up a chair and pour yourself a stiff beverage...
TLDR: Don't Panic.
If you have a regular old processor (MCU) and want to give it wireless capability, you can buy a wireless chip and stick it next to the processor, then have the MCU talk to it through a wired connection (typically UART or SPI). Think of it as the old ATDT commands that had your PC control your old screeching modems.
To standardize this communication protocol, folks came up with the Host Controller Interface (HCI) so you didn't have to reinvent that protocol for every new chip. This was handy for people on the MCU side, since they could write firmware that worked with any wireless chip out there, and could swap out for a cheaper/faster one with minimal change.
Fast forward to the era of integrated MCU+wireless, where you had a little ARM or other lightweight processor plus a little radio, and the processor could run programs in a high-level API that abstracted out the low level wireless stuff. Plus, you could use the same radio for multiple wireless protocols, like BLE, wifi, ANT, etc. Nordic and TI were early adopters of this method.
Typically, it was the vendor's own processor talking to their own wireless module, but they still implemented the full HCI interface and let it be accessed externally. Why? So if your design needed an extra beefy processor and used the MCU+wireless chip as a simple communication module, this would still work. The teeny MCU could be used to run something extra in parallel, or it could just sit idle. A typical example could be a laptop or cell phone. The little MCU is too small for everything else, so you pair it with a big chip and the big chip drives the little chip through HCI.
Sure, it would be cheaper if you just went with a basic 'dumb' wireless chip, as folks from CSR, Broadcom, and Dialog kept pointing out. But the market demanded integrated chips so we could have $10 activity trackers, fancy overpriced lightbulbs, and Twerking Santas (https://www.amazon.com/twerking-santa-claus/s?k=twerking+santa+claus).
For integrated MCU+wireless chips, most vendors didn't release the super low-level firmware that ran between them. There was no need. It was internal plumbing. They exposed SDKs so you could control the wireless chip, or high-level Bluetooth/wifi APIs so you could connect and talk to the outside world in a few lines of code. These SDKs were unique to each vendor (like Nordic's nRF Connect library, or TI's SimpleLink SDK).
Then along came Espressif out of Shanghai, China with a combo chip (ESP8266) that offered processor + wifi and was so cheap and easy to program that it took the hobbyist market by storm. Oh, god... so many LED light strips, perfect for Christmas and blinky EDM lightup outfits (hello, Adafruit: https://www.adafruit.com/category/65).
Fast forward and Espressif drops the ESP32. A bigger, faster Tensilica Xtensa processor, with built-in flash storage, plus wifi, Bluetooth, and BLE in one place. Plus lots of peripherals, busses, and IO pins. Also, running FreeRTOS and eventually Arduino SDKs, and MicroPython. All for less than $5! It took off like a rocket. So many products. Plus, you could run them as little webservers. Who doesn'l love a little webserver in their pocket?
It's gone through a few variations, including swapping out the Tensilica with an open-source RISC-V MCU, but otherwise it's a massive seller and the gateway drug for most IoT/Smarthome nerds.
So along come these Tarlogic researchers, looking to build a direct USB to bluetooth library. This way, you can drive the wireless from, say Linux, directly. There are already BLE to USB stacks, but this one is giving access at the HCI level, in a C library. Handy if you're doing research or developing drivers, but not the sort of thing your typical DIY pereon needs.
As part of their process, the researchers decide to dump the really low level ESP32 firmware and reverse engineer it.
A typical HCI implementation is a giant event loop that handles HCI opcodes and parameters. Host wants to talk to the outside world, it sets up some registers, configures the unique MAC address, then opens a channel and starts sending/receiving (hopefully without the modem screeching tones). There are typical packet encoders and decoders, multiple ISO/TCP layers, and the sort of thing that most people assume somebody else has gotten right.
For fancier implementations, there may be interrupt or DMA support. Sometimes, there's a multi-tasking part under the hood so they can time-slice between wifi, bluetooth, and ble (aka Fusion or Coexistence support). Not that you should care. The internals of this stuff is usually nobody's business and the vendors just include a binary blob as part of their SDK that handles things. The host systems just talk HCI. The wireless side talks HCI on the wired side, and wireless on the radio side. Everyone's happy.
In the process of reverse engineering the low-level HCI blob, these researchers found a few extra undocumented HCI opcodes. They're not sure what they're for, but according to their presentation (https://www.documentcloud.org/documents/25554812-2025-rootedcon-bluetoothtools/) if my super rusty Spanish holds up, it has to do with setting MAC addresses and handling low-level Link-Level Control Protocol communications (https://www.ellisys.com/technology/een_bt10.pdf).
Now in an of itself, this is no big deal. ESP32s already let you easily set your own temporary MAC address (https://randomnerdtutorials.com/get-change-esp32-esp8266-mac-address-arduino/), so there has to be a way to override the manufacturer one. And LLCP management is a totally geeky low-level thing that the MCU needs when handling wireless packets. There are perfectly good reasons why the opcodes would be there and why Espressif may not have documented them (for example, they could be used only during manufacturing QA).
So the original presentation is a teeny bit of an exaggeration. Yes, the opcodes exists. But are they nefarious? Should we stick all our ESP32s inside Faraday cages? Is this a secret plan for the CCP to remotely control our lights and plunge the world into chaos?
As I said before, ONLY if there's a secret as-yet-undiscovered wireless handshake that gives remote wireless access to these (or really, pretty much any other published HCI opcode). That presentation most definitely doesn't claim that.
To see if there is a REAL backdoor, you should wait for an analysis from fine professional wireless debugging vendors like Ellisys (starting models run $30K and up), Frontline, or Spanalytics.
Incidentally, Tarlogic, the group that put out that paper have their own BLE analyzer product (https://www.tarlogic.com/es/productos/analizador-bluetooth-le/). They look to know their stuff, so they should know better than putting out clickbait-y hair-on-fire reports. But come on, who can resist a good CCP/backdoor headline? Will media run with this and blow it out of proportion? No way!
If you've read this far, you must safely be on your third drink or the edible's just kicked in. Stop panicking, and wait until the pro sniffer and Bluetooth forum people give their opinions.
If it turns out there is an actual WIRELESS backdoor, then by all means, feel free to panic and toss out all your Smarthome plugs. Go ahead and revert to getting up and flicking on your light switch like a peasant. Have a sad, twerk-free Christmas.
But over a few undocumented HCI opcodes? Have another drink and relax.
Happy Sunday.
PS: controversy already up on wikipedia: https://en.m.wikipedia.org/wiki/ESP32
PPS: you may want to stock up on ESP32s for your light-up Christmas light project. Don't be surprised if Espressif doesn't get smacked with some hard tariffs or an outright ban, based on these ragebait headlines 🤷🏻♂️
Edit: DarkMentor offers a little more detail on the nature of the opcodes: https://darkmentor.com/blog/esp32_non-backdoor/
The article is a security company trying to hype their company with a theoretical attack that currently has no hypothetical way to be abused
The article has an update now fixing the wording to "hidden feature" but, spoilers, every BT device has vendor specific commands.
The documentation of the part just wasn't complete and this companies "fuzzing" tool found some vendor commands that weren't in the data sheet
The China part just came from OP
The article is a security company ~~trying to hype their company~~ ruining their reputation in an incredibly ill-thought out attack that companies will ABSOLUTELY remember.
Even worse, it just makes this security company look incompetent. Like a home security company that announces a huge vulnerability in Schlage locks- there's a key that can unlock the lock included with every lock sold!!11!!!11!one!
I agree, but unfortunately, this has become common since Heartbleed, and they seem to be able to sell their snake oil to CTOs...
thank you
This turned racist / xenophobic real quickly.
There have been several other posts about this without mentioning China at all, especially in the post itself.
No where in the article does it say "chinese", literally anywhere.
The chip is MANUFACTURED in China.
Check your racism.
I agree we shouldn't be racist against Chinese people, but you're ignorant. From wikipedia: ESP32 is created and developed by Espressif Systems, a Chinese company based in Shanghai, and is manufactured by TSMC using their 40 nm process.It is a successor to the ESP8266 microcontroller.
So it's designed/developed in China and manufactured in Taiwan; not China.
I actually wanted to keep the title short, but I think it would be better to edit the title to avoid any confusion to make it clear that it's manufactured in China, rather than saying it in the current way.
Edit: I edited the title to reflect the details better.
So instead of blatant racism based on a lie, you're just going to dogwhistle racism based on a lie.