this post was submitted on 31 May 2024
305 points (98.4% liked)
Linux
48082 readers
781 users here now
From Wikipedia, the free encyclopedia
Linux is a family of open source Unix-like operating systems based on the Linux kernel, an operating system kernel first released on September 17, 1991 by Linus Torvalds. Linux is typically packaged in a Linux distribution (or distro for short).
Distributions include the Linux kernel and supporting system software and libraries, many of which are provided by the GNU Project. Many Linux distributions use the word "Linux" in their name, but the Free Software Foundation uses the name GNU/Linux to emphasize the importance of GNU software, causing some controversy.
Rules
- Posts must be relevant to operating systems running the Linux kernel. GNU/Linux or otherwise.
- No misinformation
- No NSFW content
- No hate speech, bigotry, etc
Related Communities
Community icon by Alpár-Etele Méder, licensed under CC BY 3.0
founded 5 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Serious question, how would using rust avoid this? Rust still has reference types in the background, right? Still has a way to put stuff on the heap too? Those are the only 2 requirements for reusing memory bugs
This is a use-after-free, which should be impossible in safe Rust due to the borrow checker. The only way for this to happen would be incorrect unsafe code (still possible, but dramatically reduced code surface to worry about) or a compiler bug. To allocate heap space in safe Rust, you have to use types provided by the language like
Box
,Rc
,Vec
, etc. To free that space (in Rust terminology, dropping it by usingdrop()
or letting it go out of scope) you must be the owner of it and there may be current borrows (i.e. no references may exist). Once the variable isdrop
ed, the variable is dead so accessing it is a compiler error, and the compiler/std handles freeing the memory.There's some extra semantics to some of that but that's pretty much it. These kind of memory bugs are basically Rust's raison d'etre - it's been carefully designed to make most memory bugs impossible without using
unsafe
. If you'd like more information I'd be happy to provide!Thanks for the response. Ive heard of rust's compiler being very smart and checking a ton of stuff. Its good thing it does, but i feel like there are things that can cause this issues rust cant catch. Cant put my finger on it.
What would rust do if you have a class A create something on the heap, and it passes this variable ( by ref ? ) to class B, which saves the value into a private variable in class B. Class A gets out of scope, and would be cleaned up. What it put on the heap would be cleaned up, but class B still has a reference(?) to the value on the heap, no? How would rust handle such a case?
It's not like C where you have control over when you can make references to data. The compiler will stop you from making references in the cases where a memory bug would be possible.